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Abstract.
Background: Cerebral small vessel disease (SVD) and Alzheimer’s disease pathology, namely amyloid-� (A�) deposition,
commonly co-occur. Exactly how they interact remains uncertain.
Objective: Using participants from the Alzheimer’s Disease Neuroimaging Initiative (n = 216; mean age 73.29 ± 7.08 years,
91 (42.1%) females), we examined whether the presence of vascular risk factors and/or baseline cerebral SVD was related
to a greater burden of A� cross-sectionally, and at 24 months follow-up.
Method: Amyloid burden, assessed using 18F-florbetapir PET, was quantified as the global standardized uptake value ratio
(SUVR). Multimodal imaging was used to strengthen the quantification of baseline SVD as a composite variable, which
included white matter hyperintensity volume using MRI, and peak width of skeletonized mean diffusivity using diffusion ten-
sor imaging. Structural equation modeling was used to analyze the associations between demographic factors, Apolipoprotein
E �4 carrier status, vascular risk factors, SVD burden and cerebral amyloid.
Results: SVD burden had a direct association with A� burden cross-sectionally (coeff. = 0.229, p = 0.004), and an indirect
effect over time (indirect coeff. = 0.235, p = 0.004). Of the vascular risk factors, a history of hypertension (coeff. = 0.094,
p = 0.032) and a lower fasting glucose at baseline (coeff. = –0.027, p = 0.014) had a direct effect on A� burden at 24 months,
but only the direct effect of glucose persisted after regularization.
Conclusion: While A� and SVD burden have an association cross-sectionally, SVD does not appear to directly influence the
accumulation of A� longitudinally. Glucose regulation may be an important modifiable risk factor for A� accrual over time.

Keywords: Amyloid, cerebral small vessel disease, hypertension, peak width of skeletonized mean diffusivity, positron
emission tomography, white matter hyperintensities
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INTRODUCTION

The overlap between vascular risk factors, cerebral
small vessel disease (SVD), and Alzheimer’s disease
(AD) pathology, namely cerebral amyloid-� (A�),
is a vexed issue. Despite epidemiological evidence
to suggest that vascular risk factors such as hyper-
tension, dyslipidemia, obesity, and type 2 diabetes
mellitus are modifiable risk factors for the develop-
ment of AD [1–3], the literature on the association
between these risk factors and SVD with A� burden
is inconsistent.

A number of cohort studies across the AD spectrum
have utilized composite scores of vascular burden to
assess the relationship with A�, with mixed results.
While there is some evidence to support an asso-
ciation between longitudinal A� accumulation and
midlife vascular risk factor burden [4], as well as the
metabolic syndrome [5], other studies have demon-
strated no significant association [6–8]. Some of this
discrepancy is explained by variations in the study
populations, as well as methodological differences
in quantifying vascular burden. Importantly, individ-
ual vascular risk factors may each have differential
effects on A� burden [9–12]. There is a need to more
precisely understand which vascular risk factors, if
any, are potentially modifiable contributors to A�
load. Whether the impact of these vascular risk fac-
tors is mediated by its effect on SVD pathology, or
from a direct effect on A�, also requires clarification.

Moreover, while cerebral SVD and A� commonly
co-occur in the brains of older people, whether the
presence of SVD has a direct effect on the progression
of A� accumulation is unclear. White matter hyper-
intensity (WMH) volume, obtained from structural
magnetic resonance imaging (MRI), is a commonly
used quantifiable marker of SVD. A systematic
review [13] of the association between A� and WMH
demonstrated that most studies found no relationship
between WMH and A�, whether examined in a state
of disease or in cognitively healthy controls. How-
ever, it is recognized that the assessment of SVD
in the ageing brain using WMH volume alone has
limitations [14, 15].

Diffusion tensor imaging (DTI) offers an alter-
native method by which SVD can be quantified,
typically as measured by an increase in mean dif-
fusivity (MD), or a reduction in the directionality
and coherence of white matter fibers within a bundle,
as measured by a decrease in fractional anisotropy
(FA) [16]. Peak width of skeletonized mean diffusiv-
ity (PSMD) is an alternative, fully automated imaging

marker of SVD based on DTI. It is the calculated dif-
ference between the 5th and 95th percentile of the
skeletonized MD values (to eliminate cerebrospinal
fluid contamination). PSMD has been validated in
sporadic and genetically determined SVD, as well as
people with AD and healthy controls, and is poten-
tially a more robust marker of SVD than WMH
load [17]. PSMD is significantly negatively corre-
lated with processing speed and memory [18]. It
has been shown to outperform other conventional
markers of SVD in predicting cognition, including
WMH volume, enlarged perivascular spaces, lacunes,
microbleeds, and average MD [19].

To date, most studies have examined the rela-
tionship between SVD and A� pathologies based
on diagnostic classification, such as in healthy con-
trols, mild cognitive impairment (MCI) or AD.
However, neither pathology is consistently synony-
mous with the degree of clinical impairment; for
example, approximately 30% of healthy older adults
without cognitive decline have high levels of A�
binding on PET imaging [20], and A� begins to
accumulate decades prior to the onset of cogni-
tive symptoms [21]. There is arguably significant
variability and possibility of error in clinical diag-
noses, and 14% of individuals diagnosed with mild
or moderate AD have sparse or no A� plaques at
postmortem [22]. While A� is typically considered
an early pathological feature of AD, it is important
to acknowledge that it alone does not represent the
AD clinical syndrome. Thus, using a sample from
the Alzheimer’s Disease Neuroimaging Initiative, we
examined the relationship between cerebral SVD
and A� pathology independent of diagnostic cate-
gory, cross-sectionally and at 24 months’ follow-up,
using quantifiable biomarkers across multiple imag-
ing modalities: WMH volume on cerebral MRI and
PSMD on DTI as markers of SVD, and standardized
uptake value ratio quantified on amyloid PET as a
measure of A� burden. We asked the questions:

(1) Do baseline vascular risk factors and/or SVD
burden have a direct effect on A� burden,
cross-sectionally and over time?

(2) Does the presence of SVD mediate the effect
of vascular risk factors on A� burden?

MATERIALS AND METHODS

Participants

Participants were drawn from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database
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(http://www.adni.loni.usc.edu). The ADNI was
launched in 2003 as a public-private collaboration
lead by Principal Investigator, Dr Michael W. Weiner.
It is a multisite, longitudinal investigation to assess
biomarkers throughout the ageing process, from
normal ageing, early MCI, late MCI, to dementia.
The primary goal of ADNI has been to test whether
serial MRI, PET, other biological markers, and
clinical and neuropsychological assessment can be
combined to measure the progression of MCI and
early AD. Participants with baseline DTI, MRI,
and amyloid PET scans (that is, from the ADNI2
and ADNIGO cohorts) by July 2017 were included
(n = 216). Those with follow-up MRI and amyloid
PET scans at 24 months were also included as part
of the longitudinal analysis. All ADNI participants
provided written informed consent approved by each
sites’ Institutional Review Board.

Clinical and biomarker assessment

Clinical and biomarker assessments are stan-
dardized across sites, and available in the ADNI2
and ADNIGO procedures manuals (http://adni.loni.
usc.edu/methods/documents/). In addition to demo-
graphic features, this included data on relevant
cardiovascular risk factors including a history of
hypertension, cardiovascular disease, atrial fibrilla-
tion, smoking and stroke, body mass index (BMI), as
well as fasting cholesterol and fasting blood glucose
levels at baseline.

Imaging acquisition

Amyloid PET scans were acquired on multiple
scanners but all with an F18-AV-45 (Florbetapir)
radiotracer (8.0–10 mCi). Scanning commenced
at 50 min post-injection and was 20-min duration
(four × 5 min frames). To standardize data acquisi-
tion across protocols, all scans underwent clearly
outlined pre-processing procedures. MRI and DTI
scans were also acquired across multiple sites on
multiple 3T MRI scanners, according to standardized
protocols. All imaging protocols and pre-processing
procedures are publicly available on the ADNI web-
site (http://adni.loni.usc.edu/methods/).

Amyloid PET data processing

Data for amyloid PET were processed by ADNI
core laboratories in accordance with detailed “Flor-
betapir processing methods” (available via the
https://ida.loni.usc.edu portal). Cortical amyloid bur-

den was quantified as the standardized uptake value
ratio (SUVR) using a composite reference region
comprised of the whole cerebellum, brainstem/pons
and eroded subcortical white matter, as per the
ADNI recommendations for longitudinal florbetapir
analyses [23]. For this study we used the data
file current at the time of analysis, “UCBERKE-
LEYAV45 10 17 16”.

DTI data processing and PSMD calculation

DTI data processing was completed at the Centre
for Healthy Brain Ageing, UNSW Sydney. Diffusion
weighted images (DWI) were pre-processed using
the FMRIB’s Diffusion Toolbox of the FMRIB
Software Library (FSL) [24]. Raw DTI data were
visually inspected to exclude any severe artefacts.
A binary brain mask was created to remove the
non-brain tissue and Eddy-current correction was
applied. Diffusion tensor was reconstructed using the
DTIfit program included in FSL. For skeletonization
from FA images, we followed the ENIGMA-TBSS
protocols (http://enigma.ini.usc.edu/wp-content/up
loads/2014/01/ENIGMA TBSS protocol USC.pdf).
Using the FA-derived projection parameters, MD
images were projected onto the skeleton. The final
MD skeletons were further masked with the template
skeleton threshold at an FA value of 0.3 to avoid
contamination of the skeleton through cerebrospinal
fluid partial volume effects. Regions of the skeleton
directly adjacent to the ventricles, such as the
fornix, were removed from further analysis by a
custom-made mask [17].

Statistical analysis

Data cleaning and descriptive analyses were com-
pleted using SPSS version 25 [25], and the remaining
analyses were conducted using R, version 4.0.2 [26].
Variables were explored to examine if they were nor-
mally distributed. WMH volumes were right skewed,
and therefore logarithmically transformed (by base
10). PSMD was multiplied by 1000 because values
were extremely small. All continuous variables were
standardized to place them on a common metric.
Descriptive statistics for the study sample charac-
teristics at baseline were presented using means and
standard deviations for continuous variables, and fre-
quencies and percentages for categorical variables.

Structural equation modeling (SEM) was con-
ducted using the lavaan package [27] to investigate
the hypothesized relationships between sociodemo-

http://www.adni.loni.usc.edu
http://adni.loni.usc.edu/methods/documents/
http://adni.loni.usc.edu/methods/
https://ida.loni.usc.eduportal
http://enigma.ini.usc.edu/wp-content/uploads/2014/01/ENIGMA_TBSS_protocol_USC.pdf
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graphic variables and vascular risk factors with SVD
pathology and A� load on imaging, at baseline and
at 24 months follow-up. Results of analyses with
p-values < 0.05 were regarded as statistically sig-
nificant. The variables used in SEM can either be
observed (also known as indicators), or latent (unob-
served variables or factors formed from multiple
observed indicators). Latent variables tap the under-
lying construct (e.g., SVD pathology) of observed
indicators with measurement error modelled and
removed and hence may produce less biased param-
eter estimates [28]. Moreover, SEM uses Full
Information Maximum Likelihood (FIML) to han-
dle missing data which has been shown to be more
efficient than other methods such as listwise deletion
[29].

The hypothesized model is displayed in Fig. 1.
In Fig. 1, circles represent latent variables, and
rectangles represent observed variables/indicators,
and the presence of arrows connecting variables
implies a hypothesized relationship between them.
The sociodemographic and vascular risk factors
examined included age, sex, education, APOE �4
carrier, having a history of hypertension, cardiovas-
cular disease, atrial fibrillation, or smoking, as well as
BMI, fasting total cholesterol, and fasting blood glu-
cose. Only two participants had a history of stroke
and therefore stroke was excluded from the model.
The primary outcomes were 1) global SUVR at base-
line, 2) global SUVR at 24 months follow-up, and
3) SVD at baseline, a latent variable, indicated by
PSMD and WMH volume. Although WMHs are a
widely accepted neuroimaging marker of SVD, not
all WMHs are solely vascular in origin [30]. More-
over, normal appearing white matter on T2-FLAIR
images has been associated with abnormalities on
other modalities such as DTI [31]. Thus, in addi-
tion to the statistical benefits as described above,
PSMD and WMH volume were modelled as a latent
variable to provide a more robust marker of SVD.
Because FIML was used to handle missing data, all
participants with available baseline data (including
covariates) were retained in the analysis. PSMD mea-
sures at 24 months were not available. The mean
and variance of the SVD factor were constrained to
0 and 1, respectively, to ensure model identification
[32]. Because all continuous variables were standard-
ized, the model coefficients could be interpreted as
standardized regression coefficients (for example, a
standard deviation change in SVD for every stan-
dard deviation change in age). Indirect effects could
be interpreted as change in the outcome in standard

deviation for every standard deviation change in a
continuous predictor via the mediator(s). For cat-
egorical variables, the model coefficients could be
interpreted as differences in standardized unit across
groups.

The direction of effect (that is, from SVD to
SUVR1) was chosen a priori based on clinical,
pathological, and animal model studies that demon-
strate that early vascular dysfunction predates and
contributes to the pathogenesis of AD biomarker
accumulation, including A� [33]. AD is a complex
neurodegenerative disorder with multiple biological
components; although understanding the temporal
sequencing of pathological events remains a chal-
lenge, large data-driven analysis of the ADNI cohort
has shown that vascular dysregulation may be the ear-
liest and most robust process associated with the AD
cascade, followed next by A� accumulation [34]. A
non-recursive model with reciprocal paths between
SVD and SUVR1 was explored and tested but did
not converge due to model non-identification.

Given the potential for model overfitting with
the number of factors for our sample size, regular-
ized SEM was conducted using the regsem package
[35] as a sensitivity analysis to assess the robust-
ness of the original FIML model. Regularized SEM
penalizes specific model parameters such that fewer
parameters are retained in the model, hence reducing
model complexity [36]. The lasso (least-absolute-
shrinkage-and-selection operator) method was used
in the current analysis, and because lasso parame-
ter estimates tend to be biased toward zero [37], the
model was refitted without any penalty using the cho-
sen parameters based on the best regularized SEM
solution [38].

Data availability

ADNI data are shared through the LONI Image
and Data archive, contingent on adherence to the
Data Use Agreement and publication policies
(http:/ /adni.loni.usc.edu/ data-samples/access-data/)
and were downloaded from https://ida.loni.usc.edu.

RESULTS

Sample characteristics

A total of 216 participants met criteria for having
florbetapir PET, DTI, and MRI scans at base-
line (mean age 73.29 ± 7.08, 91 (42.1%) females).
Participants’ baseline demographic and clinical char-

http://adni.loni.usc.edu/data-samples/access-data/
https://ida.loni.usc.edu
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Fig. 1. Hypothesized model for testing. Age, sex, education, APOE �4 carrier status, as well as vascular risk factors (history of hypertension,
cardiovascular disease, atrial fibrillation, smoking, body mass index as well as fasting total cholesterol and fasting glucose levels) were
always included. The primary outcomes were 1) cortical SUVR at baseline (SUVR1), 2) cortical SUVR at 24 months follow-up (SUVR2),
and 3) SVD at baseline, comprised of PSMD and WMH volume. APOE �4, Apolipoprotein E �4; BMI, body mass index; PSMD, peak width
of skeletonized mean diffusivity; SUVR, standardized uptake value ratio; SVD, small vessel disease; WMHV, white matter hyperintensity
volume.

acteristics are outlined in Table 1. Table 2 summarizes
the longitudinal imaging characteristics of the sam-
ple, at baseline and 24 months’ follow-up.

Statistically significant direct effects of the media-
tion model are summarized in Fig. 2. The statistically
significant indirect and direct effects for predictors of
SVD and A� burden are summarized below. Details
of all effects on SVD and A�, at baseline and 24

months follow-up, can be found in Supplementary
Tables 1 and 2, respectively.

Associations with baseline amyloid burden
and SVD

Based on the model fit indices, the model had an
adequate fit with the data (χ2(df = 12) = 17.154, p =
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0.144; CFI = 0.994; TLI = 0.950; RMSEA = 0.045,
90% CI [0.000, 0.089]; SRMR = 0.019). The factor
loadings from the latent SVD factor to both base-
line PSMD (λ = 0.517, standard error (SE) = 0.067,
p < 0.001) and WMH volume (λ = 0.593, SE = 0.075,
p < 0.001) were statistically significant.

Table 1
Participant characteristics at baseline (n = 216)

Baseline n (%) or
mean ± SD

Demographics
Mean age (y) 73.29 ± 7.08
Female 91 (42.1)
Education (y) 15.97 ± 2.75
Married 169 (78.2)
MMSE score (out of 30) 27.20 ± 2.63

Diagnosis
Alzheimer’s disease 47 (21.8)
MCI (including SMC/EMCI/LMCI) 30 / 61 / 32 (56.9)
Healthy controls 46 (21.3)

History of vascular risk factors
Hypertension 116 (53.7)
Stroke/TIA 2 (0.9)
Cardiovascular disease 146 (67.6)
Atrial fibrillation 7 (3.2)
Smoking 91 (42.1)

Current vascular risk factors
BMI (kg/m2)a 27.59 ± 5.15
Fasting blood glucose (mg/dL)b 102.25 ± 27.36
Fasting total cholesterol (mg/dL)b 189.33 ± 35.40

APOE genotypec

APOE �4/�4 18 (8.4)
APOE �2/�4 or �3/�4 91 (42.3)
APOE �2/�2 or �2/�3 or �3/�3 106 (49.3)

SD, standard deviation; MMSE, Mini-Mental State Examina-
tion; BMI, body mass index, SMC, significant memory concern;
EMCI, early mild cognitive impairment; LMCI, late mild cognitive
impairment; TIA, transient ischemic attack; APOE, Apolipoprotein
E. ‘a’ indicates 3 missing values, n = 213; ‘b’ indicates 29 missing
values, n = 187; ‘c’ indicates one missing value, n = 215.

Firstly, SVD burden was significantly associated
with a higher baseline A� burden (coefficient = 0.229,
SE = 0.079, p = 0.004) (Fig. 2).

Age (coeff. = 0.737, SE = 0.124, p < 0.001), APOE
�4 status (coeff. = 0.455, SE = 0.166, p = 0.006), a his-
tory of CVD (coeff. = 0.698, SE = 0.266, p = 0.009),
and fasting total cholesterol level (coeff. = –0.232,
SE = 0.107, p = 0.031) were significantly associated
with SVD (Fig. 2). Baseline SVD significantly medi-
ated the associations of age (coeff. = 0.168, SE =
0.070, p = 0.015), and CVD (coeff. = 0.160, SE =
0.080, p = 0.045) with baseline A� burden (Supple-
mentary Table 1).

Further, sex (coded female = 0, male = 1) (coeff. =
–0.295, SE = 0.135, p = 0.029) and APOE �4 status
(coeff. = 0.632, SE = 0.116, p < 0.001) showed sig-
nificant direct associations with baseline A� burden
(Fig. 2).

The remaining risk factors (i.e., education, history
of hypertension, atrial fibrillation, smoking, BMI, as
well as fasting total cholesterol and glucose levels)
were unrelated to baseline amyloid burden, either
directly, or via SVD (see Supplementary Table 1 for
detailed results).

Effects on 24-month amyloid burden

A� burden at 24 months was predicted by
higher baseline A� levels (coeff. = 1.028, SE = 0.021,
p < 0.001) (Fig. 2). While baseline SVD burden
did not significantly predict 24-month A� levels
after controlling for baseline A� levels, its indi-
rect effect via baseline A� levels were significant
(coeff. = 0.235, SE = 0.081, p = 0.004).

Table 2
Longitudinal imaging characteristics

Baseline 24 months Statistical
mean ± SD mean ± SD comparison

MRI, n 216 118
WMH volume (cm3) 9.06 ± 11.18 10.49 ± 13.37 Z = –3.49, p < 0.001
Log10 WMH volume 0.74 ± 0.44 0.79 ± 0.45 0.03 (0.00, 0.05) t(117) = 2.01, p = 0.047

DTI, n 216 –
PSMD (mm2/s) 3.37 × 10−4 ± (7.82 × 10−5) – NA

Amyloid PET, n 216 137
Global SUVRcerebel. 1.23 ± 0.24 1.21 ± 0.23 0.01 (–0.00, 0.03), t(136) = 1.90, p = 0.06
Global SUVRcomp. 0.89 ± 0.16 0.88 ± 0.15 0.01 (0.01, 0.02), t(136) = 5.29, p < 0.001

WMH volumes were non-normally distributed and so a Wilcoxon Signed Rank Test was used to statistically compare
baseline and follow-up WMH volume. The other statistical comparisons were completed using paired samples t-
tests, and results include the mean difference (95% CI), test result (df), and p-value. MRI, magnetic resonance
imaging; WMH, white matter hyperintensity; DTI, diffusion tensor imaging; PSMD, peak width of skeletonized
mean diffusivity; PET, positron emission tomography; SUVR, standardized uptake value ratio; cerebel., referenced
to the cerebellum; comp., referenced to a composite reference region.
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Fig. 2. Significant direct associations between demographic and vascular risk factors, small vessel disease and amyloid burden, at baseline
and 24 months follow-up. The numbers indicate the estimate of effect size (standard error). ∗ denotes p < 0.05; ∗∗ denotes p < 0.01. Sex was
coded female = 0, male = 1. APOE �4, Apolipoprotein E �4; BMI, body mass index; PSMD, peak width of skeletonized mean diffusivity;
SUVR1, standardized uptake value ratio at baseline; SUVR2, standardized uptake value ratio at 24 months; SVD, small vessel disease;
WMHV, white matter hyperintensity volume.

The direct effect of sex (coeff. = –0.096, SE =
0.037, p = 0.010) and education (coeff. = –0.037,
SE = 0.018, p = 0.041) were significant, indicating
that being female and having fewer years education
predicted greater 24-month A� burden (Fig. 2).

Age had a significant indirect effect on 24-month
A� burden (coeff. = 0.197, SE = 0.073, p = 0.007),
and this was predominantly driven via its effect on
baseline SVD and A� (coeff. = 0.173, SE = 0.071,
p = 0.015). However, a small negative direct effect of

age was also observed (coeff. = –0.058, SE = 0.021,
p = 0.006).

A previous diagnosis of hypertension had a direct
effect on higher A� levels at 24 months (coeff. =
0.094, SE = 0.044, p = 0.032). Similarly, baseline
fasting glucose level (coeff. = –0.027, SE = 0.011,
p = 0.014) directly predicted A� levels at 24 months
(Fig. 2). The negative direction of effect indicates
that a lower fasting blood glucose at baseline pre-
dicted higher A� levels at 24 months. A history of
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CVD (coeff. = 0.164, SE = 0.082, p = 0.045) had a sig-
nificant indirect effect via baseline SVD and A�.
Finally, APOE �4 status (coeff. = 0.141, SE = 0.062,
p = 0.023) had a total indirect effect on longitudinal
A� burden.

The remaining factors (a history of atrial fibril-
lation, smoking, BMI, and fasting total cholesterol
level) were unrelated to 24-month A� burden, by
total, direct nor indirect effects (see Supplementary
Table 2 for details).

Sensitivity analysis

The regularized SEM model was tested with 33
penalty values on the structural parameters involv-
ing demographic and cardiovascular risk factors.
The optimal solution with the smallest BIC had a
penalty value of 0.1, with fourteen parameters reg-
ularized to zero. This solution was used to refit a
model without any penalty which showed an adequate
fit with the data (χ2(df = 24) = 33.852, p = 0.087;
CFI = 0.989; TLI = 0.953; RMSEA = 0.044, 90% CI
[0.000, 0.076]; SRMR = 0.029).

The significant findings on baseline amyloid bur-
den and SVD were replicated, with the exception of
APOE �4 status and cholesterol no longer having a
significant association with SVD. The detailed results
of effects on baseline amyloid burden and SVD based
on regularized SEM are summarized in Supplemen-
tary Table 3.

The significant findings on 24-month amyloid bur-
den were also replicated, except for education and
hypertension, which no longer had a significant direct
effect on 24-month A� burden. The detailed results
of effects on the 24-month amyloid burden based
on regularized SEM are available in Supplementary
Table 4.

DISCUSSION

This study, using structural equation modeling,
examined the complex relationship between A� and
vascular pathologies, in conjunction with demo-
graphic and vascular risk factors. To our knowledge,
this is the first study to assess the relationship between
cerebral A� and SVD whereby SVD was treated
as a latent variable indicated by PSMD and WMH
volume. Moreover, the relationship was examined
regardless of diagnosis and across imaging modal-
ities, to mitigate the uncertainty associated with
clinical phenotypes.

Our findings indicate that SVD is directly asso-
ciated with concurrent cerebral A� burden but does
not appear to have a direct effect on A� over time.
There is some evidence to support this finding in the
existing literature, which to date has most commonly
used WMH volume as a proxy for SVD. While some
studies have described an association between WMH
load and SUVR [39–42], many report no significant
relationship between A� and WMH burden across
diagnostic groups, and over time (see Roseborough
et al. [13] for a systematic review). To our knowl-
edge, there is no comparable literature assessing the
relationship between PSMD and A�. However, our
results are in keeping with previous studies utilizing
related DTI measures which indicated altered white
matter tract structural integrity in A� positive indi-
viduals, such as changes to mean diffusivity [43, 44]
and fractional anisotropy [45]. Taken together, our
findings suggest that while SVD and A� commonly
co-occur, the presence of one pathology does not
necessarily directly propagate the progression of the
other pathology over time.

Our study demonstrated direct effects of select
cardiovascular risk factors on A� burden longi-
tudinally—namely, a history of hypertension and
baseline fasting blood glucose level. However, it
should be noted that the direct effect of hypertension
was relatively small and was not replicated using the
regularized SEM approach, and so this result should
be interpreted with caution. The existing evidence on
the interaction between blood pressure and A� to date
is varied. Some studies have demonstrated an associ-
ation between A� accumulation on PET imaging and
hypertension both as previously diagnosed hyperten-
sion [9, 46], and as measured at the time of assessment
[5, 12, 47]. This also echoes previous neuropatho-
logical findings [48]. However, conflictual literature
also exists which has not supported this association
[4, 6, 10]. A particular issue in understanding the
relationship between hypertension and A� is the vari-
able definitions of abnormal blood pressure utilized
across studies; this includes a previous diagnosis of
hypertension, systolic or diastolic readings outside
of the normal reference range, or the use of anti-
hypertensive treatment. Regardless, chronic arterial
hypertension has been shown to drive parenchymal
A� accumulation in animal models [49] and may
impair efficient clearance of A� plaques [50], which
provides a possible pathophysiological mechanism
for a direct effect of hypertension in the accumulation
of A�. Further investigation is required to clarify the
role of hypertension in the pathophysiology of AD,



R. Koncz et al. / Vascular Risk and Amyloid Load in Older Adults 1625

including whether adequate treatment or prevention
of hypertension may confer some benefit in the delay
or reduced development of A� aggregates.

The findings regarding fasting blood glucose level
and A� burden are challenging to explain, that is, a
lower fasting blood glucose at baseline was predictive
of greater A� at 24 months. While this was con-
trary to our expectation, the published literature on
this topic is conflictual. The Finnish Geriatric Inter-
vention Study to Prevent Cognitive Impairment and
Disability (‘FINGER’) study supported a negative
association, in which PiB-PET positive participants
had better glucose homeostasis [10]. Similarly, type
2 diabetes was associated with lower cerebral cortical
A� in certain brain regions in another ADNI cohort
[51]. However, a number of studies have found no
significant association between A� and other markers
of glucose control, including HbA1c [52], impaired
fasting glucose (that is, fasting glucose level > 100
mg/dL) [12], or a clinical diagnosis of type 2 diabetes
[6, 53]. Thus, while there is more robust epidemio-
logical evidence of an association between diabetes
and AD [3], at a biomarker level there remains sig-
nificant inconsistency in the literature which requires
further clarification.

We also note a small but significant negative direct
effect of age on A� at 24 months, suggesting that
younger age was associated with greater longitudi-
nal A� levels. The most likely explanation for this
is the fact that A� accumulation over time observes
sigmoidal kinetics and slows in established AD [21].
Moreover, A� accumulation appears to plateau with
age in those without concurrent neurodegeneration
[54]. The differential rates of amyloid accumulation
in relation to age may therefore be explained by the
inclusion of participants across the AD spectrum in
our cohort, with younger participants being more
likely to be to the left on the sigmoidal curve and
therefore likely to show more change. This result is
not inconsistent with the overall (total) effect of age in
predicting A� burden being positive—that is, being
older predicted a higher A� at 24 months—in keep-
ing with existing literature on the natural history of
A� accumulation with age [20, 55].

Several limitations of the study should be recog-
nized, including aspects of the statistical method-
ology. Firstly, the inclusion of multiple predictive
factors may risk model overfitting. We attempted to
verify the robustness of the model using regularized
SEM, and it is reassuring that this sensitivity analy-
sis afforded comparable results at both baseline and
follow-up. Secondly, our sample size was limited to

n = 216, and approximately half of that at 24 months
follow-up. We used FIML, a statistical methodology
widely available and accepted to handle missing data
which is preferable to other traditional methods [29]
and comparable with advanced methods such as mul-
tiple imputation when the model is correctly specified
[56]. Nevertheless, some caution should be taken in
interpreting these results, and future studies would
ideally include a larger sample to cross-validate the
proposed model and further investigate predictors of
neuropathology in the aging brain.

Next, further limitations in our study reflect the
challenges in quantifying SVD. Firstly, SVD was
unable to be quantified at 24 months as PSMD data
was not available, and we were therefore unable to
test the inverse direction of effect over time, i.e.,
whether the presence of amyloid promotes SVD.
However, our method was chosen a priori based
on the vascular hypothesis of AD which purports
that vascular dysfunction precedes and promotes A�
accumulation [33], and so this was able to be tested
even in the absence of follow-up SVD data. Further-
more, while WMH are commonly used as a proxy
for SVD burden, not all WMH are vascular in origin;
WMH are heterogenous and it is not clear what pro-
portion of WMH seen are of vascular etiology or due
to axonal injury, inflammation, or neurodegeneration
[30]. We attempted to address this by using PSMD
as an alternative marker of SVD. There are other
markers of SVD such as lacunar infarcts, cerebral
microbleeds and perivascular spaces which were not
included in this study, some of which are associated
with cerebral amyloid [57]. The acquisition of scans
across multiple sites could also render the imaging
data susceptible to slight variations. However,
ADNI is a well-established trial with detailed
protocols and subsequent quality review checks to
assist with the standardization of procedures across
sites (http://adni.loni.usc.edu/methods/documents/).
Moreover, it is important to acknowledge that the
ADNI cohort is selected to be free of extensive
cerebrovascular disease; participants were included
if their Hachinski ischemic scale score was < 4, and
were excluded if the screening MRI demonstrated
multiple lacunar infarcts or a single large infarct
(http:/ / adni.loni.usc.edu/ wp-content/uploads/2008/
07/adni2-procedures-manual.pdf). As such, one must
be cautious in interpreting the results in relation to
cerebral SVD due to the relatively low burden in this
cohort. Future studies could consider examination in
cohorts with a higher cerebrovascular using a more
comprehensive composite marker of SVD.

http://adni.loni.usc.edu/methods/documents/
http://adni.loni.usc.edu/wp-content/uploads/2008/07/adni2-procedures-manual.pdf
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Furthermore, given the need to constrain the num-
ber of predictors in the statistical model, we did
not examine medication usage as a potential con-
found, which would be pertinent to consider in future
work. The study also did not investigate A� and SVD
biomarkers in relation to cognitive function, which
limits its application in understanding the clinical
implications of our findings. However, ADNI does
incorporate participants across a spectrum of cogni-
tive capabilities, from healthy controls to AD. Our
study attempted to remove the uncertainty often asso-
ciated with clinical diagnostic categories, to examine
imaging biomarkers as quantifiable endophenotypes.

Conclusion

There is growing evidence that both SVD and A�
accumulation are important in the development of
AD; our findings suggest that at a pathological level,
they have both direct and indirect associations. Glu-
cose regulation may be an important modifiable risk
factor for A� accrual. Longitudinal studies incorpo-
rating cognitive performance, as well as additional
biomarkers, are needed to further clarify whether
vascular burden contributes to the development of
AD-related pathology and determine its relevance to
clinical outcomes.
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